B. Tech IV Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AEE74a- SWITCHED MODE POWER CONVERTERS

(Professional Elective-III)

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Understand basic concepts of DC-DC converters
- Understand the concepts of resonant converters and their classification, various types of multilevel inverters, power conditioners, UPS and filters.
- Apply various modulation and harmonic elimination techniques over the converters.
- Analyze the state space modeling of various types of converters.
- Design inductor and transformer for various power electronic applications.

UNIT – I: DC-DC Converters

10 Hrs

Principles of step down and step up converters – Analysis and state space modeling of Buck, Boost, Buck-Boost and Cuk converters – Numerical Examples

Learning Outcomes:

At the end of this unit, the student will be able to

Understand state space modeling of DC-DC converters.

L1

• Distinguish between step down and step up converters.

L2

UNIT – II: Switching Mode Power Converters

10 Hrs

Analysis and state space modeling of fly back, Forward, Luo, Half bridge and full bridge converters-control circuits and PWM techniques – Numerical Examples

Learning Outcomes:

At the end of this unit, the student will be able to

• Know about state space modelling of converters

L1

• Understand about various control circuits & PWM techniques

L2

UNIT – III: Resonant Converters

10 Hrs

Introduction- classification- basic concepts- Resonant switch- Load Resonant converters- ZVS, Clamped voltage topologies- DC link inverters with Zero Voltage Switching- Series and parallel Resonant inverters- Voltage control – Numerical Examples

Learning Outcomes:

At the end of this unit, the student will be able to

Classification of resonant converters.

L1

• Distinguish between series and parallel resonant converters.

L2

UNIT - IV: DC-AC Converters

10 Hrs

Single phase and three phase inverters, control using various (sine PWM, SVPWM and advanced modulation) techniques, various harmonic elimination techniques- Multilevel inverters- Concepts - Types: Diode clamped- Flying capacitor- Cascaded types- Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand and analyze different single phase and three phase inverters –modulation& harmonic elimination techniques.
- Understand various types of multilevel inverters with waveforms and their applications L2

UNIT - V: Power Conditioners, UPS & FILTERS

10 Hrs

Introduction- Power line disturbances- Power conditioners –UPS: offline UPS, Online UPS, Applications – Filters: Voltage filters, Series-parallel resonant filters, filter without series capacitors, filter for PWM VSI, current filter, DC filters – Design of inductor and transformer for PE applications – Selection of capacitors.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand different types of power line disturbances, power conditioners, in detail working of UPS and its applications.
- Understand various types of filters with and without capacitors & inductor and transformer for various power electronic applications.

Text Books:

- 1. L. Umanand, "Power Electronics: Essentials and Applications", Wiley, 2009
- 2. M.H. Rashid, "Power Electronics handbook", Elsevier Publication, 2001.
- **3.** V Ramanarayanan, "Course material on Switched Mode Power Conversion" Dept. of Electrical Engg. IISc. Bangalore.

Reference Books:

- 1. Philip T. Krein, "Elements of Power Electronics", Oxford University Press, 2012
- 2. Ned Mohan, Tore.M.Undeland, William.P.Robbins, "Power Electronics converters, Applications and design", 3rd Edition, John Wiley and Sons, 2006
- 3. M.H. Rashid, "Power Electronics circuits, devices and applications", 3rd Edition Prentice Hall of India New Delhi, 2007

Course Outcomes:

At the end of this Course the student will be able to

To be able to solve the problems and to design of various DC-DC converters
To be able to understand advanced converters of SMPCs
To understand the performance of resonant converters
To understand various types and performance characteristics of 1-φ and 3-φ inverters with single/multi levels
To understand about power conditioners, UPS and filters&PE applications

